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In the context of vector Padé approximants we present an extension of de
Montessus’ theorem to vector-valued meromorphic functions with poles on the
boundary of interest—thus strengthening previous results for these approximants.
The proofs are framed in Clifford algebras which provide a natural language for
discussing vector rational approximants. We also present results for the asymptotic
behaviour of the constituent parts of the Clifford denominator—namely, its scalar
and bivector parts. In particular, for the case of vector-valued rational functions in
which the principal parts are orthogonal to each other for different poles, we dem-
onstrate that the rate of convergence is doubled for the scalar part of the denomi-
nator. Finally, we derive consequences of the convergence theorems for the
approximation of poles, using either the complete Clifford denominator or its scalar
part. © 2002 Elsevier Science (USA)

1. INTRODUCTION

In this paper we are concerned with a generalisation of Padé approxi-
mation to the case of vector-valued functions f: CW Cd analytic at the
origin. We consider the power series

f(z)=c0+zc1+z2c2+·· · , cn ¥ Cd, z ¥ C (1.1)

which converges in some neighbourhood of the origin. In particular, we
consider meromorphic functions of the form

f(z)=
go(z)
Ro(z)

, (1.2)



where Ro(z) is a polynomial over C with zeroes z1, ..., zo, and each com-
ponent go, i(z) (i=1, ..., d) is analytic for |z| < |zo+1 | with only polar sin-
gularities on |z|=|zo+1 |. This type of function occurs in the study of itera-
tive methods of solving systems of linear algebraic equations; see, e.g., [4,
29] and section 4 of this work. o controls the number of poles considered
in the approximation.

The rational approximations considered in this paper stem from the
work of Wynn [31,32] and later investigated by Graves-Morris et al. [3].
However, there is more than one extension of Padé approximation to
vector-valued functions cf. [10, 28]—in particular we refer to the work of
Sidi. Here we investigate those approximants derived using the vector
inverse of v :=(v1, v2, ..., vd) ¥ Cd defined by

v−1 :=
v

v · v
(1.3)

provided v · v :=;d
i=1 vi

2 ] 0. For d=1 we obtain the usual Padé approx-
imants. There have been a number of studies of the convergence behaviour
of rational approximants to vector-valued meromorphic functions, e.g.,
[8–10, 20, 28]. Indeed, Sidi has considered the case of meromorphic func-
tions with poles on the circle of meromorphy both for the scalar case [26]
and the vector case [25, 28] using a definition of vector-valued rational
approximant different from that employed here. For d=1 our results are
similar to those of Sidi [26], and Liu [14], who has also studied this
problem. As far as the vector case is concerned, there are analogous results
with Sidi’s work—e.g., Theorem 3.1 has counterparts in Eq. (4.7) of
Theorem 4.1 and Eq. (4.21) of Theorem 4.2 of [28]. This, despite the fact
that the structure of the approximants studied in this paper is quite differ-
ent from that of the constructs in [28].

The natural framework for discussing vector-valued rational approxi-
mants based on (1.3) is that of Clifford algebras—which allows multiplica-
tion, as well as addition, of vectors and multiplication by scalars. This
approach has the advantage of enabling certain arguments valid in the
scalar case to be translated to the vector case. In fact, to prove our first
theorem we extend Saff’s method [24] as presented in [2] by Baker and
Graves-Morris.

In the next section we define vector Padé approximants in the context of
Clifford algebras and state some properties required later. Then, in Section
3, we present a theorem generalising de Montessus’ result to vector-valued
meromorphic functions. We also present consequences for the numerator
polynomial. The presence of only polar singularities on the boundary
|z|=|zo+1 |, allows the derivation of stronger results than those published
hitherto [10, 20].
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In the fourth section we concentrate on the denominator of the [l/m]
vector Padé approximant. This polynomial is completely determined by a
scalar polynomial of maximum degree m and an anti-symmetric matrix of
order d (corresponding to a bivector), whose entries are also polynomials
of maximum degree m [23]. We then consider the case where each com-
ponent of f(z) is itself rational. This type of function occurs in the context
of generating matrices and is discussed in detail by Sidi in [27]. We prove
that the rate of convergence of the scalar polynomial to Ro(z) is doubled in
those situations where the principal parts of the function f(z) correspond-
ing to different poles are orthogonal to each other, thus demonstrating that
the convergence behaviour for d > 1 can be stronger than that for d=1.
For the approximants considered here this has been observed numerically
in certain simple cases, in [5], and explained in [21]. The current work
extends analogous results of [28] from simple to multiple poles. To
complete the study of the denominator in this section, we consider the
convergence behaviour of the anti-symmetric matrix of polynomials as it
tends to the null matrix.

In the last section, we investigate, à la Sidi [28], the asymptotic charac-
ter of the errors in pole approximation using the denominators of vector
Padé approximants. We not only consider the effects of using the full
Clifford denominator but also of its scalar part in this approximation.

2. CLIFFORD ALGEBRAS AND VECTOR PADÉ APPROXIMANTS

Let {e1, e2 · · · ed} be an orthonormal basis of Rd satisfying

eiej+ejei=2di, j, i, j=1, 2, ..., d. (2.1)

The elements ei, i=1, ..., d generate the complex Clifford algebra Cl(Cd)
with unity denoted by 1 [17, 18]. We assume that the universality prop-
erty, e1e2 · · · ed ] ±1, is valid. Thus Cl(Cd) is a 2d-dimensional linear space
over C with basis elements

eI=ei1i2 · · · ik=ei1ei2 · · · eik , (2.2)

where I={i1, i2, ..., ik} and 1 [ i1 < i2 < · · · ik [ d for k=1, 2, ..., d. The
empty set, I=”, i.e., k=0, corresponds to the identity element. A general
element of Cl(Cd) is given by

u=C
I
aIeI, aI ¥ C, (2.3)

where the summation is over the 2d different ordered multi-indices I.
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For given k, the eI form the basis of a subspace, Mk Cd, whose elements
are called k-vectors. Cl(Cd) is the direct sum of the spaces Mk Cd for
k=0, 1, ..., d. The k-vector part of the Clifford element a is denoted by
OaPk. The coefficient a0 :=OaP0 is called the real or scalar part of a, and is
also denoted by Re(a). Cd may be identified with the subspace M1 Cd of
Cl(Cd). To any vector (v1, v2, ..., vd) ¥ Cd we associate the Clifford element,
;d
i=1 viei, and denote each by v. Using (2.1) we obtain

v2=v · v (2.4)

thus implying

v−1=
v

v · v
(2.5)

provided v · v ] 0, cf. (1.3).
We may write Cl(Cd)=Cl+(Cd) À Cl−(Cd) where Cl+(Cd) is the even

subalgebra composed of the direct sum of the spaces Mk Cd for even k,
while Cl−(Cd) is direct sum of the spaces Mk Cd for odd k.

We make use of the reverse anti-automorphism : aW ã obtained by
reversing the order of factors in eI ; hence, ab6=b̃ã. We note that ṽ=v, for
v ¥ Cd.

The spinor norm or absolute value of an element in Cl(Cd) is a generali-
sation of the Euclidean norm on Cd

|a|==C
I
|aI |2, a ¥ Cl(Cd). (2.6)

From this definition it is clear that |ã|=|a|, -a ¥ Cl(Cd). From [11] we
have

|uv| [Kd |u| |v|, u, v ¥ Cl(Cd), (2.7)

where

Kd=2d/4 for d even and Kd=2(d+1)/4 for d odd. (2.8)

Since Cl(Cd) is a finite-dimensional normed linear space it is complete.
Our main interest in this paper is in functions f: CW Cd, but we will find

that we have to extend our considerations to functions f: CW Cl(Cd). All
linear operators such as differentiation and integration may be imple-
mented componentwise. Hence, a function, f(z) :=; I fI(z) eI, is analytic
in a domain D if each component function fI(z) is analytic in D. Since the
algebra is finite-dimensional it follows that for functions g(z), h(z):
CW Cl(Cd), both analytic in D, their product f(z) :=g(z) h(z) is also
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analytic in D. Here, we have fI(z)=;A, B gA(z) hB(z), the summation
being over A, B such that eAeB=eI. A function f(z) analytic in
{z ¥ C : |z| < r} may be expanded in a MacLaurin series

f(z)=C
.

n=0
cnzn, (2.9)

where cn :=f(n)(0)/n!, n=0, 1, ...—the infinite series being convergent in
the spinor norm for |z| < r. Hermite’s formula for a partial sum of this
series is given by

1
2pi

F
C

1−(z/v) l+1

v−z
f(v) dv, C ¥ D, (2.10)

where D is a domain of analyticity of f(z) and C is a contour enclosing the
origin; this is valid since it is true componentwise.

The right-handed [l/m] vector Padé approximant [19] to the vector-
valued function f(z), which is a particular case of (2.9), is given by

[l/m](z) :=p[l/m](z){q[l/m](z)}−1, (2.11)

where p[l/m](z) and q[l/m](z) are polynomials over Cl(Cd) of maximum
degrees l, m respectively, such that

[f(z)−[l/m](z)] l+m0 =0, (2.12)

where we have used Nuttall’s notation for the MacLaurin section of
f(z) :=;.

i=0 fiz
i

[f(z)]n0 :=C
n

i=0
fiz i. (2.13)

The leading coefficient of a polynomial is denoted by a dot, while a hat is
used to indicate that a polynomial is monic. Hence, we have

q̇̂[l/m](z)=1. (2.14)

Because the complex Clifford algebra Cl(Cd) is used, the left-handed
vector Padé approximant is given by the reversion of the right-handed
form. The [l/m] vector Padé approximant, if it exists, is unique. Further-
more, we may define vector and scalar polynomials (of maximum degrees
(l+m) and 2m, respectively) as

P l, m(z) :=p[l/m](z) q[l/m](z)6 ¥ Cd[z] (2.15)
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and

Q l, m(z) :=q[l/m](z) q[l/m](z)6 ¥ C[z]. (2.16)

The reader is referred to [6, 19, 22] for justification and further discussion
of the properties of vector Padé approximants.

It may be shown that, with the normalisation (2.14), q[l/m](z) ¥Cl+(Cd)[z]
and p[l/m](z) ¥ Cl−(Cd)[z]. Furthermore, using a theorem of Lipschitz
dating from 1886 [12, 13], it is possible to demonstrate that the denomi-
nator polynomial may be determined by its scalar and bivector parts only
[23]:

s[l/m](z) :=Oq[l/m](z)P0 (2.17)

and

L[l/m](z) :=Oq[l/m](z)P2. (2.18)

In Section 4 we consider the asymptotic behaviour of these quantities as
lQ..

There is a corresponding characterisation for the numerator polynomial
[23].

3. VECTOR-VALUED MEROMORPHIC FUNCTIONS

We consider vector-valued meromorphic functions of the form

f(z) :=
g(z)
RM(z)

, (3.1)

where

Rk(z) :=D
k

i=1
(z−zi)mi for k=1, 2, ..., M (3.2)

in which the mi are positive integers and the zi are distinct complex
numbers ordered as follows

0 < |z1 | [ |z2 | [ · · · [ |zo | < ro < |zo+1 |=|zo+2 |

=· · ·=|zo+h | < ro+h < |zo+h+1 | [ · · · [ |zM | < r. (3.3)
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The ro, ro+h are positive numbers satisfying (3.3). Each component func-
tion gi(z), i=1, ..., d is analytic for |z| < r, with the vector function
satisfying

g(zi) ·g(zi) ] 0, i=1, 2, ..., M (3.4)

thus guaranteeing the invertibility of each complex vector g(zi)—cf. (2.5).
From its definition, f(z) has a MacLaurin series expansion of the form
(2.1) valid for |z| < |z1 |. Our interest is in approximating f(z) as far as the
pole zo, for which |zo | < |zM |. We set

m :=C
o

i=1
mi and go(z) :=Ro(z) f(z) (3.5)

with

m̄k :=max
|zi|=|zk|

mi, k=1, ..., M. (3.6)

Given a subset A of C and a Clifford-valued function a: CW Cl(Cd), we
adopt the notation

||a(z)||A :=max
z ¥ A
|a(z)|

using the spinor norm (2.6). Finally, we define

Dk :={z ¥ C : |z| < |zk |}, k=1, ..., M. (3.7)

Theorem 3.1. For a vector-valued function, f(z), of the form described
above, the [l/m] vector Padé approximant, p[l/m](z){q[l/m](z)}−1, exists for
sufficiently large n :=l+m. Furthermore, as nQ.,

(i) the monic denominators, q̂[l/m](z), converge uniformly to Ro(z) in
compact subsets E of the complex plane. The rate of convergence is governed
by

||Ro(z)− q̂[l/m](z)||E=O 1n m̄o+m̄o+1 −2 :
zo
zo+1
:n2 ; (3.8)

(ii) the [l/m] vector Padé approximants converge uniformly to f(z) in
compact subsets S of D−o+1 :=Do+1−1o

i=1 {zi} . In fact, there exists a real
number KS and an integer nS such that

|f(z)−[l/m](z)| [KSn m̄o+1 −1 :
z
zo+1
:n -z ¥ S, -n > nS. (3.9)
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Proof. We follow the approach of Saff [24] as formulated in [2] and
begin by parametrising q[l/m](z) as

q[l/m](z)=qn, mRo(z)+C
o

k=1
C
mk −1

s=0
q (s)n (zk) Bk, s(z), (3.10)

where qn, m ¥ R, q (s)n (zk) ¥ Cl(C
d) and

B :={Bk, s(z): k=1, 2, ..., o; s=0, 1 · · ·mk−1} (3.11)

is a Hermite basis of polynomials over C, each of maximum degree (m−1),
satisfying

5 d j
dz j
Bk, s(z)6

z=zi

=dikdjs, 1 [ i [ o, 0 [ j [ mi−1. (3.12)

From

q[l/m](z)=C
I
q[l/m]I (z) eI

we obtain the scalar relations

q[l/m]I (z)=C
o

k=1
C
mk −1

s=0
q (s)n, I(zk) Bk, s(z), I ]”

q[l/m]0 (z)=qn, mRo(z)+C
o

k=1
C
mk −1

s=0
q (s)n, 0(zk) Bk, s(z), I=”.

We seek a solution to the approximant problem for which the denominator
polynomial has a real, positive leading coefficient, qn, m, which satisfies the
normalisation

qn, m+C
o

k=1
C
mk −1

s=0
|q (s)n (zk)|=1, (3.13)

where the spinor norm is used.
Since each component of the Clifford product go(z) q[l/m](z) is analytic

in Do+1, the first n+1 terms of the MacLaurin series of this product define
a polynomial pn: CW Cl(Cd), which, using Hermite’s formula (2.10), may
be expressed as

pn(z)=
1
2pi

G
|v|=ro

1−(z/v)n+1

v−z
go(v) q[l/m](v) dv. (3.14)
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From (2.12) and (3.1) we may establish the identity

pn(z)=Ro(z) p[l/m](z). (3.15)

Hence,

p (s)n (zk)=0, k=1, 2, ..., o, s=0, 1, ..., mk−1 (3.16)

the superscript in which denotes the sth derivative. Since Cl(Cd) is assumed
to be a universal algebra the eI in (2.3) are linearly independent. Hence,
each component p (s)n, I(zk) vanishes.

We demonstrate that Eqs. (3.16) together with the normalisation (3.13)
determine all the parameters of q[l/m](z) for sufficiently large l.

When imposing the conditions (3.16) we make use of the result

5 d s
dz s
3zn+1
2pi

G
|v|=ro

go(v) q[l/m](v)
vn+1(v−z)

dv46
z=zk

=O 1n s+m̄o+1 −1 : zk
zo+1
:n2 (3.17)

for k=1, 2, ..., o and s=0, 1, ..., which we proceed to prove.
If h l, m(v) :=go(v) q[l/m](v) then each complex-valued function
h l, mI (v) v

−n−1 is continuous on |v|=ro, thus allowing componentwise dif-
ferentiation under the integral sign [1]. Then, using Leibnitz’s theorem the
left-hand side of (3.17) may be shown to equal

s! C
s

r=0

Rn+1
s−r
S zk r−sFn, r(zk), (3.18)

where

Fn, r(z) :=
zn+1

2pi
G
|v|=ro

go(v) q[l/m](v)
vn+1(v−z) r+1

dv, r=0, 1, ..., mo−1, |z| < ro.

(3.19)

Expanding the contour to |v|=ro+h we may apply Cauchy’s theorem to
each component function to obtain

Fn, r(z) :=
zn+1

2pi
G
|v|=ro+h

go(v) q[l/m](v)
vn+1(v−z) r+1

dv−zn+1

× C
h

i=1
Res 5 h l, m(v)

vn+1(v−z) r+1
: v=zo+i6 (3.20)

since the singularities of h l, mI (v) encountered are those of go(v) which are
poles at zo+i each of multiplicity mo+i, (i=1, 2, ..., h)—cf. (3.2).
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Considering the integral first, we note that the polynomials Bk, s(z), Ro(z)
in (3.10) are bounded, by Bo+h say, independently of l, on |v|=ro+h. It
then follows from (3.10) that max|v|=ro+h |q

[l/m](v)| [ Bo+h. Furthermore,
since each component go, i(v), i=1, 2, ..., d is continuous and therefore
bounded on |v|=ro+h, |go(v)| is also bounded on this circle, by Go say.
Hence, using (2.7)

|h l, m(v)| [KdGoBo+h, |v|=ro+h.

Therefore, the spinor norm of the first term on the right-hand side of (3.20)
is bounded by

Co :
z
ro+h
:n, |z| < ro, (3.21a)

where

Co := max
0 [ r [ mo−1

roKdGoBo+h
(ro+h−ro) r+1

(3.21b)

a constant independent of l.
Considering the i th term in the summation of (3.20) (including the

factor zn+1), suppose h l, mI (v) has a pole at v=zo+i of order si+1. The cor-
responding residue is given by

zn+1

si!
lim
vQ zo+i

d si

dv si
3(v−zo+i) si+1 h l, mI (v)

vn+1(v−z) r+1
4 . (3.22)

For fixed z with |z| < ro, each component go, j(v)(v−zo+i) si+1 (v−z)−r−1,
j=1, 2, ..., d is an analytic function of v at v=zo+i. So, this function and
its first si derivatives are bounded at this point. Note also that the poly-
nomials q[l/m]J (v) (for all multi-indices J), of maximum degree m, and their
derivatives may be bounded at the same point, using (3.10), (3.13), by a
constant independent of l. Hence, with the help of Leibnitz’s theorem and
equation (2.7), we may find constants Ci, independent of n and z such that
(3.22) is bounded by

Cin si :
z
zo+1
:n for |z| < ro and i=1, 2, ..., h (3.23)

for sufficiently large n. Now, there must exist a multi-index I such that
h l, mI (v) has a pole at v=zo+i of exact order mo+i. If this were not the
case, the invertibility of q[l/m](zo+i) would still follow from the argument
below, since only the power of n is affected. This would imply that
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go(v)(v−zo+i)mo+i vanishes at v=zo+i, contradicting the assumption (3.4).
Consequently, there is a constant C, also independent of n and z such that

|Fn, r(z)| [ Cn m̄o+1 −1 :
z
zo+1
:n, |z| < ro (3.24)

for sufficiently large n.
Noting that s! (n+1s−r)=O(n

s−r) we obtain the result (3.17).
We are now in a position to estimate the parameters describing q[l/m](z)

and to demonstrate that (3.13) may be satisfied. On imposing the con-
straints (3.16) we may use (3.17) to write

go(zk) q
(s)
n (zk)+C

s−1

r=0

R s
r
S g (s−r)o (zk) q

(r)
n (zk)=O 1n s+m̄o+1 −1 :

zk
zo+1
:n2 (3.25)

for k=1, 2, ..., o and s=0, 1, ..., mk−1.
Since go(zk) is invertible, from (3.4), we deduce that, with s=0,

q (0)n (zk)=O 1n m̄o+1 −1 :
zk
zo+1
:n2 . (3.26)

Then, by induction, we may demonstrate that

q (s)n (zk)=O 1n s+m̄o+1 −1 :
zk
zo+1
:n2 (3.27)

for k=1, 2, ..., o and s=0, 1, ..., mk−1 (for s \ mk see Eq. (3.41)).
From (3.27), (3.13), and (3.3) we conclude that

qn, m=1− C
o

k=1
C
mk −1

s=0
|q (s)n (zk)|=1+O 1n m̄o+m̄o+1 −2 :

zo
zo+1
:n2 (3.28)

so that, as required, for sufficiently large n, the leading coefficient of
q[l/m](z) is positive.

We now consider the monic denominator polynomial q̂[l/m](z)

q̂[l/m](z) :=
q[l/m](z)
qn, m

for z ¥ E, a compact subset of the complex plane. Clearly, the polynomials
Ro(z), Bk, s(z), (k=1, 2, ..., o; s=0, 1, ..., mk−1) are bounded on E. This,
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together with (3.27) and (3.28) implies the existence of a constant KE,
independent of n and z such that, for sufficiently large n,

|Ro(z)− q̂[l/m](z)|=
1
qn, m
: C
o

k=1
C
mk −1

s=0
q (s)n (zk) Bk, s(zk) : [KEn m̄o+m̄o+1 −2 :

zo
zo+1
:n,

z ¥ E (3.29)

thus guaranteeing the uniform convergence of q̂[l/m](z) to Ro(z) in compact
subsets, E, of C at the rate stated in (3.8).

We now prove that, for n large enough, the monic denominator poly-
nomial is invertible in compact subsets of D−o+1. Given a compact subset S
of D−o+1 there is a positive number E such that |Ro(z)| > E for all z in S.
Furthermore, given 0 < d < 1, there exists an integer l0, such that

|Ro(z)− q̂[l/m](z)| <
Ed

Kd
-l > l0 and z ¥ S

which leads to

:1− q̂
[l/m](z)
Ro(z)
: < d
Kd

-l > l0 and z ¥ S.

Now, it is readily shown, using standard methods, e.g., [30], that, for
a ¥ Cl(Cd) satisfying |a| < d/Kd where d < 1, then (1−a)−1 exists in Cl(Cd)
and |(1−a)−1| < 1/(1−d). The proof uses the completeness of Cl(Cd) and
the result |a r+1| [Kd r |a| r+1 which follows from (2.7). Identifying (1−a)
with q̂[l/m](z)/Ro(z) we conclude that {q[l/m](z)}−1 exists, for l > l0, z ¥ S,
and that

|{q[l/m](z)}−1| <
1

E(1−d)
-z ¥ S -l > l0. (3.30)

We define the polynomial over Cl(Cd) of degree l

p[l/m](z) :=
pn(z)

Ro(z) qn, m
(3.31)

and consider the rational function

p[l/m](z){q̂[l/m](z)}−1=
pn(z)
Ro(z)

{q[l/m](z)}−1 (3.32)
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which is well-defined for l > l0 and any z ¥ S. We observe that, from
(3.14), (3.32),

f(z)−p[l/m](z){q̂[l/m](z)}−1=
zn+1

2piRo(z)
G
|v|=ro

go(v) q[l/m](v)
vn+1(v−z)

dv{q[l/m](z)}−1

(3.33)

thus satisfying the Padé order condition (2.12). Hence, the [l/m] vector
Padé approximant to f(z) is given by (3.32). Since the right-hand side of
(3.33) is identical to

Fn, 0(z)
Ro(z)

{q[l/m](z)}−1

we may use (3.24), (3.30) to bound the vector Padé error

|f(z)−[l/m](z)| [KSn m̄o+1 −1 :
z
zo+1
:n -z ¥ S -l > l0, (3.34)

where

KS :=
C

E2(1−d)
(3.35)

independent of n and z; thus, the result (3.9) is established. L

Corollary 3.2. As nQ., the numerators, p[l/m](z), converge uni-
formly to go(z) in compact subsets T of Do+1.
In fact, if |zo | < s1 [ |z| [ s2 < |zo+1 |, then there is a constant K1, 2 and an
integer n1, 2 such that

|go(z)−p[l/m](z)| [K1, 2n m̄o+1 −1 :
z
zo+1
:n -s1 [ |z| [ s2, -n > n1, 2.

(3.36)

Whereas, if |z| [ s3 < |zo |, then there are numbers K3, n3 such that

|go(z)−p[l/m](z)| [K3n m̄o+m̄o+1 −2 :
zo
zo+1
:n -|z| [ s3, n > n3. (3.37)
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Proof. Define S1, 2 :={z ¥ C : s1 [ |z| [ s2} where |zo | < s1 < s2 < |zo+1 |.
Then S1, 2 … D

−
o+1. Hence, Ro(z) is bounded above and below for z ¥ S1, 2,

while for sufficiently large n , q[l/m](z) is bounded above. We write

|go(z)−p[l/m](z)|

[Kd 3 |f(z)−[l/m](z)| |q̂[l/m](z)|+
|go(z)|
|Ro(z)|

|Ro(z)− q̂[l/m](z)|4 . (3.38)

Since each component of go(z) is bounded for z ¥ S1, 2 we may use
(3.34), (3.29) to yield (3.36).

Noting that each Clifford component of the numerator error is a func-
tion analytic in Do+1, we may use the maximum modulus principle to
deduce uniformity of convergence in any compact subset of Do+1.

Suppose |z| < |zo |, then there is a number s3 ¥ (|zo−1 |, |zo |) such that
|z| [ s3. Appealing to the maximum modulus principle and (3.38) with
|z|=s3 we derive (3.37). L

The behaviour of the numerator error at the interpolation points is given
by (3.37) for |zk | < |zo |. If, however, |zk |=|zo |, then we may proceed as
follows. Using (3.14), (3.19) we write

{go(z)−p[l/m](z)} Ro(z)=go(z){Ro(z)− q̂[l/m](z)}+Fn, 0(z)(qn, m)−1. (3.39)

Differentiating mk times with respect to z, and noting that R (mk)o (zk) ] 0, we
obtain

|go(zk)−p[l/m](zk)|=O 1nak :
zo
zo+1
:n2 , ak :=m̄o+1−1+max(m̄o−1, mk)

(3.40)

using (3.2), (3.17) together with the fact that (for m > 1)

: d s
dz s
q̂[l/m](zk)−R

(s)
o (zk) :=O 1n m̄o+m̄o+1 −2 :

zo
zo+1
:n2

for s=mk, mk+1, ..., m−1 (3.41)

which follows from (3.10), (3.27).
From the above result and theorem (3.1) we readily prove

Corollary 3.3. Let the scalar polynomial Q l, m(z) and the vector of
polynomials P l, m(z) be defined by (2.15), (2.16) with the normalisation
(2.14).
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(i) As nQ. the polynomials Q l, m(z) converge uniformly to {Ro(z)}2

in compact subsets, E, of the complex plane. The rate of convergence is
governed by

||{Ro(z)}2−Q l, m(z)||E=O 1n m̄o+m̄o+1 −2 :
zo
zo+1
:n2 . (3.42)

(ii) As nQ. the vectors of polynomials P l, m(z) converge uniformly to
Ro(z) go(z) in compact subsets, T, of Do+1.

If |zo | < s1 [ |z| [ s2 < |zo+1 |, then there is a constant K
−

1, 2 and an integer
n −1, 2 such that

|Ro(z) go(z)−P l, m(z)| [K −1, 2n
m̄o+1 −1 : z

zo+1
:n -s1 [ |z| [ s2, n > n

−

1, 2.

(3.43)

If |z| [ s3 < |zo |, then there are numbers K
−

3, n
−

3 such that

|Ro(z)go(z)−P l, m(z)| [K −3n
m̄o+m̄o+1 −2 : zo

zo+1
:n -|z| [ s3, n > n

−

3.

(3.44)

It is straightforward to extend these ideas to estimate
{g (s)o (zk): s=0, ..., mk−1} from the derivatives of P l, m(z) at zk from the m thk
to the (mk+s) th.

4. SCALAR AND BIVECTOR PARTS OF THE DENOMINATOR

The numerator and denominator polynomials of a vector Padé approx-
imant appear to need many degrees of freedom in their description, cf.
(2.3). However, in [23] it is shown how each may be expressed in terms of
a scalar polynomial and an antisymmetric matrix of dimension d with
polynomial entries. This matrix corresponds to a bivector in the Clifford
algebra Cl(Cd). In this section we present an analysis of the asymptotic
behaviour of these quantities for the denominator polynomial in the case
where each gi(z), i=1, ..., d of (3.1) is a polynomial of maximum degree
;M+1
k=1 mk. We may then write

f(z)=C
M

k=1
C
mk −1

s=0

vk, s
(z−zk) s+1

+G(z), (4.1)

where each component Gi(z), i=1, ..., d is a polynomial of maximum
degree mM+1. This type of vector-valued function is of relevance in the

A VECTOR OF DE MONTESSUS’ THEOREM 155



study of matrix iteration methods when the matrix may be defective. The
reader is referred to [27, 29] for a discussion of this topic together with a
derivation of the above generating function. We are particularly interested
in the behaviour of the denominator polynomial of the [l/m] vector Padé
approximant to f(z) when the vector residues vk, s are orthogonal for dif-
ferent poles, i.e.,

vk1, s1 · vk2, s2=0, k1 ] k2 (4.2)

for s1=0, 1, ..., mk1 −1, s2=0, 1, ..., mk2 −1.
Since (4.1) is an instance of (3.1) it is clear from theorem (3.1) that the
[l/m] approximant exists for sufficiently large n :=l+m and that the
monic denominator q̂[l/m](z) converges uniformly to Ro(z) in compact
subsets of C.

Employing the notation of definitions (2.17) and (2.18), where the
denominator polynomial is monic, we prove the following result:

Theorem 4.1. Given a vector-valued function f(z) of the form (4.1) with
(3.4) and (4.2) valid, together with a compact subset E of C , then, for suffi-
ciently large n, the [l/m] vector Padé approximant exists. The monic denom-
inator of this approximant has a scalar part which converges uniformly to
Ro(z) in E, with the rate of convergence governed by

||Ro(z)−s l, m(z)||E=O 1n2(m̄o+m̄o+1 −2) :
zo
zo+1
:2n2 . (4.3a)

The bivector part of the denominator converges uniformly to zero in E, with
the rate of convergence governed by

||L l, m(z)||E=O 1n m̄o+m̄o+1 −2 :
zo
zo+1
:n2 . (4.3b)

If (4.2) does not hold then (4.3b) is still valid while (4.3a) is replaced by

||Ro(z)−s l, m(z)||E=O 1n m̄o+m̄o+1 −2 :
zo
zo+1
:n2 . (4.4)

For functions of the form considered in Section 3 statements similar to
(4.3b) and (4.4) hold.
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Proof. We follow the proof of theorem (3.1) and seek to apply the
conditions (3.16) to the unknowns in (3.10). Observe that Fn, r(zk) of (3.19)
may be expressed as

Fn, r(zk)=
(zk)n+1

2pi
G
|v|=rM

go(v) q[l/m](v)
vn+1(v−zk) r+1

dv

−(zk)n+1 C
M

kŒ=o+1
Res 5 h l, m(v)

vn+1(v−zk) r+1
: v=zkŒ6 , (4.5)

where the contour of (3.19) has been expanded to rM satisfying |zM | < rM.
The integral in (4.5) may be shown to vanish for n \ 2m+mM+1−r.

Using (3.5), (3.10) , and the definition of h l, m(v) we may write

h l, m(v)
(v−zk) r+1

=f(v) 5qn, mTk, r(v)+ C
o

k1=1
C
mk1
−1

s1=0
q (s1)n (zk1 ) T

k, r
k1, s1 (v)6 (4.6)

in which Tk, r(v) and Tk, rk1, s1 (v) are scalar polynomials, whose coefficients are
independent of n, each of maximum degree (2m−r−1). Then, considering
the contribution of the first term in (4.6) to (4.5), we apply Leibnitz’s
theorem to write

Res 5f(v) T
k, r(v)

vn+1
: v=zkŒ6= C

M

kŒ=o+1
C
mkŒ−1

sŒ=0
vkŒ, sŒ Res 5 Tk, r(v)

vn+1(v−zkŒ) sŒ+1
: v=zkŒ6

=
1

(zkŒ)n+1
C
M

kŒ=o+1
C
mkŒ−1

sŒ=0
n sŒvkŒ, sŒa

n, k, r
kŒ, sŒ ,

where

an, k, rkŒ, sŒ :=
−1
n sŒ

C
sŒ

l=0

(−1) l (n+1)l
(zkŒ) l l!(sŒ−l)!

5 d (sŒ−l)
dv (sŒ−l)

Tk, r(v)6
v=zkŒ

.

For fixed k, r, kŒ, sŒ the an, k, rkŒ, sŒ form a sequence of complex numbers which is
bounded as nQ.. Treating the remaining terms of (4.6) in similar fashion
leads to

Fn, r(zk)=C
kŒ, sŒ

5 zk
zkŒ
6n+1 n sŒvkŒ, sŒ 5qn, man, k, rkŒ, sŒ + C

k1, s1

q (sŒ)n (zk1 ) a
n, k, r
k1, s1; kŒ, sŒ
6 (4.7)

in which, for fixed k, r, k1, s1, kŒ, sŒ the an, k, rk1, s1; kŒ, sŒ form another sequence of
complex numbers bounded as nQ.. For brevity, we adopt the convention
that unprimed k-dependent indices take the values 1, 2, ..., o, while if
primed they run from o+1 toM.
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Hence, using (4.7), (3.18), i.e., the left hand side of (3.17), may be
expressed as

s! C
s

r=0
C
kŒ, sŒ

Rn+1
s−r
S (zk)r−s 5

zk
zkŒ
6n+1 nsŒvkŒ, sŒ 5qn, man, k, rkŒ, sŒ +C

k1, s1

q(s1)n (zk1) a
n, k, r
k1, s1; kŒ, sŒ
6

=ns+m̄k+1 −1 5 zk
zo+1
6n C
kŒ, sŒ

vkŒ, sŒ 5qn, mbn, kkŒ, sŒ+C
k1, s1

q(s1)n (zk1) b
n, k
k1, s1; kŒ, sŒ
6, (4.8)

where we have introduced the complex numbers

bn, kkŒ, sŒ :=
s!

n s+m̄o+1 −1−sŒzkŒ
C
s

r=0

Rn+1
s−r
S (zk) r+1−s an, k, rkŒ, sŒ

5zo+1
zkŒ
6n

which remain bounded as nQ. for fixed k, kŒ, sŒ. Similar definitions apply
for the bounded sequences bn, kk, s; kŒ, sŒ.

We define new vector sequences by

V (n, k) :=C
kŒ, sŒ

vkŒ, sŒb
n, k
kŒ, sŒ (4.9a)

and

V (n, k)k1, s1 :=C
kŒ, sŒ

vkŒ, sŒb
n, k
k1, s1; kŒ, sŒ (4.9b)

which are O(1) as nQ. keeping the other indices fixed.
The conditions originating from (3.16) now may be stated as

ukq
(s)
n (zk)+C

s−1

r=0

R s
r
S uk, s−rq (r)n (zk)

=n s+m̄o+1 −1 5 zk
zo+1
6n 5qn, mV (n, k)+ C

k1, s1

q (s1)n (zk1 ) V (n, k)k1, s1
6 (4.10)

with

uk :=go(zk) and uk, s :=g (s)o (zk) (4.11)

for k=1, 2 · · ·o and s=1, 2, ..., mk−1. Again we emphasise that uk, from
(3.4), is invertible. We note also that

uk, s=s! C
s

r=0
nk, s−rvk, mk −r−1 with uk=uk, 0,

where nk, s :=R
(mk+s)
o (zk)/(mk+s)! for k=1, 2, ..., o and s=0, 1, ..., mk−1.

If we denote the vector space spanned by the vk, s, for s=0, 1 · · ·mk−1, by
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Vk then uk, uk, r ¥Vk, r=0, 1 · · ·mk−1 and Vk1 +Vk2 , k1 ] k2 from (4.2).
Also, V (n, k) and V (n, k)k1, s1 are orthogonal to Vk2 for k2=1, 2, ..., o.

We solve (4.10) iteratively. Defining the Clifford element

Wk
n :=n

m̄o+1 −1 5 zk
zo+1
6n uk −1 5V (n, k)+ C

k1, s1

3q (s1)n (zk1)
qn, m
4 V (n, k)k1, s1
6 (4.12)

Eq. (4.10) may be rewritten as

q̂ (s)n (zk) :=5
q (s)n (zk)
qn, m
6=n sWk

n − C
s−1

r=0

R s
r
S uk −1uk, s−r q̂ (r)n (zk). (4.13)

By repeated substitution we may remove the unknowns in the summation
on the right-hand side of (4.13) to obtain

q̂ (s)n (zk)=n
sQ (k, s) 11

n
2Wk

n , k=1, 2, ..., o s=0, 1, ..., mk−1, (4.14)

where the Q (k, s)(1/n) are polynomials in 1/n over Cl(Cd), each of
maximum degree s, and which satisfy the recurrence relations

Q (k, s+1) 11
n
2=1− C

s

r=0

R s+1
r
S uk −1uk, s+1−rQ (k, r) 1

1
n
251
n
6 s+1−r (4.15)

with

Q (k, 0) 11
n
2 :=1. (4.16)

We may prove by induction that, for the positive numbers ck
(k=1, 2, ..., o) given by

ck := max
0 [ r [ s
0 [ s < mk

3R s+1
r
S Kd |uk −1uk, s+1−r |4

then

:Q (k, s) 11
n
2 : [ (1+ck) s, s=0, 1, ..., mk−1

using the spinor norm (2.6).
It is readily seen that, apart from scalar factors dependent on binomial

coefficients, the Clifford coefficients of Q (k, r)(1n) are sums of products of
even numbers of vectors in Cd of the form

uk −1uk, i1uk
−1uk, i2 · · ·uk

−1uk, it , t [ r. (4.17)
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Using (4.12), Eq. (4.14) may be rewritten as

q̂ (s)n (zk)=a
k, s
n + C

k1, s1

bk, s; k1, s1n q̂ (s1)n (zk1 ), (4.18)

where

ak, sn :=n
s+m̄o+1 −1 5 zk

zo+1
6n Q (k, s) 11

n
2 uk −1Vn, k (4.19)

and

bk, s; k1, s1n :=n s+m̄o+1 −1 5 zk
zo+1
6n Q (k, s) 11

n
2 uk −1Vn, kk1, s1 . (4.20)

We note that both ak, sn and bk, s; k1, s1n are of the same order

|ak, sn |, |b
k, s; k1, s1
n |=O 1n s+m̄o+1 −1 : zk

zo+1
:n2 (4.21)

thus guaranteeing, for sufficiently large n, the convergence of the following
infinite series representing the solution to (4.18)

q̂ (s)n (zk)=C
.

t=0
Ck, sn, t , (4.22)

where

Ck, sn, 0 :=a
k, s
n and

Ck, sn, t := C
k1, s1

· · · C
kt, st

bk, s; k1, s1n bk1, s1; k2, s2n · · · bkt−1, st−1; kt, stn akt, stn . (4.23)

However, our interest is in the scalar part of [q (s)n (zk)/qn, m]. Therefore,
we consider the partial sum

Sk, sn, L :=C
L

t=0
Ck, sn, t (4.24)

whose scalar part is denoted by

OSk, sn, LP0=C
L

t=0
OCk, sn, tP0. (4.25)
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From (4.19) we observe that

OCk, sn, 0P0=n
s+m̄o+1 −1 5 zk

zo+1
6n 7Q (k, s) 11

n
2 uk −1V (n, k)8

0
. (4.26)

The factor O · · ·P0 on the right-hand side may be expanded as a sum of
terms, a typical example of which is

Ouk −1uk1, i1uk
−1 · · ·uk −1uk1, ituk

−1V (n, k)P0 (4.27)

using (4.17). However, the scalar part of a product of an odd number of
vectors is zero, while for an even number of vectors vi ¥ Cd, i=1, 2, ..., 2t

Ov1v2 · · · v2tP0=C
i
s(i)(vi1 · vi2 )(vi3 · vi4 ) · · · (vi2t−1 · vi2t ), (4.28)

where the summation is over all permutations i :=(i1, i2, ..., i2t) of the
integers 1, 2, ..., 2t and s(i) denotes the corresponding parity of the per-
mutation [15]. Therefore, since, from the comments made in the para-
graph before Eq. (4.12)

uk ·V (n, k)=uk, i ·V (n, k)=0, i=1, ..., mk−1

we conclude that

OCk, sn, 0P0=0. (4.29)

We now consider (cf. (4.23))

Ck, sn, t= C
k1, s1

· · · C
kt, st

n (t+1)(m̄o+1 −1)+(s+s1+· · ·+st) 5zkzk1 · · · zkt
(zo+1) t+1
6n

×Q (k, s) 11
n
2 uk −1V (n, k)k1, s1Q

(k1, s1) 11
n
2 uk1 −1V (n, k1)k2, s2 · · ·

×V (n, kt−1)kt, st Q
(kt, st) 11

n
2 ukt −1V (n, kt). (4.30)

When expanded in terms of a sum of products of vectors, each product
involves (t+1) vectors from ÁVkŒ, (kŒ=o+1, ..., M), each of which is
orthogonal to all the other vectors originating from Vk, (k=1, 2, ..., o).
Hence, for a non-zero contribution to the scalar part of this product t must
be odd. In addition, the expansion of the factor Q (k, s)(1/n) uk −1 contains an
odd number of vectors from Vk in each product. From (4.28) one of these
vectors must be contracted (i.e., a scalar product composed) with a vector
from Vki , (i=1, 2, ..., t). For a non-zero contribution, this can only happen
if k=ki for at least one i between 1 and t.
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We also point out that, since Q (k, s)(1/n) is bounded for fixed k, s, and
since V (n, k)kŒ, sŒ [V

(n, k)] are bounded vectors for fixed k, kŒ, sŒ, which integers
may assume a finite number (independent of n) of values, there is a con-
stant b independent of k, s, kŒ, sŒ, n such that

:Q (k, s) 11
n
2 uk −1V (n, k)kŒ, sŒ

: [ b and :Q (k, s) 11
n
2 uk −1V (n, k) : [ b.

Therefore,

|OCk, sn, tP0 | [ b
2Kdn s+mk+2m̄o+1 −3 :

zk
zo+1
:2n 3mKdbn m̄o+m̄o+1 −2 :

zo
zo+1
:n4 t−1.

(4.31)

Hence, for n sufficiently large that |{mKd · · · }| < 1/`2, we obtain

|OSk, sn, LP0 | [ 2b
2Kdn s+mk+2m̄o+1 −3 :

zk
zo+1
:2n. (4.32)

We conclude that

|Oq̂ (s)n (zk)P0 | [ 2b
2Kdn s+mk+2m̄o+1 −3 :

zk
zo+1
:2n. (4.33)

Following (3.29) we finally obtain, for z ¥ E, a compact subset of C,

|Ro(z)−Oq̂[l/m](z)P0 | [ C
o

k=1
C
mk −1

s=0
|Bk, s(z)| 2b2Kdn s+mk+2m̄o+1 −3 :

zk
zo+1
:2n

[K+ n2(m̄o+m̄o+1 −2) :
zo
zo+1
:2n (4.34)

for sufficiently large n and an appropriate constant K+ independent of n,
thus proving (4.3a).

For the bivector part of q̂[l/m](z) we use (4.18), (4.21), and (4.22) to
write

|Oq̂ (s)n (zk)P2 |=O 1n s+m̄o+1 −1 :
zk
zo+1
:n2 . (4.35)

Therefore, with the help of (3.10) we obtain

|Oq̂[l/m](z)P2 |=O 1n m̄o+m̄o+1 −2 :
zo
zo+1
:n2 (4.36)
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for z ¥ E. The rate of convergence in (4.35) and hence (4.36) cannot be
improved, in general, since there is a non-zero contribution from the
bivector uk NV (n, k) which vanishes if and only if the two vectors are parallel.
This is not the case in general—indeed, for real non-null vectors this is
impossible, since the two vectors are orthogonal. Statement (4.3b) now
follows.

In the situation where the vectors vk, s of (4.1) do not satisfy (4.2) it is
clear from (4.18), (4.21), (4.22), and (3.28) that

|Oq̂ (s)n (zk)P0 |, |Oq̂
(s)
n (zk)P2 |=O 1n s+m̄o+1 −1 :

zk
zo+1
:n2 . (4.37)

Indeed, from (3.27) and (3.28), this is true for functions of the form
depicted in Section 3, The remaining results of the theorem then follow. L

5. POLE APPROXIMATION

In this section we consider various approximations to the poles of vector-
valued functions f(z), of the forms described in Sections 3 and 4. The poles
of the [l/m] vector Padé approximant to f(z) are given by the zeroes of
Q l, m(z) defined by (2.16). However, this polynomial is of degree 2m, thus
yielding twice as many poles as required. Since the bivector part of the
denominator converges to zero as lQ., an alternative approach is to
approximate Ro(z) with the scalar part of q̂[l/m](z), viz. s l, m(z). This poly-
nomial has the correct number of zeroes which we denote by z (n)k, j
(j=1, 2, ..., mk, k=1, 2, ..., o). Furthermore, we may follow Sidi [28],
and construct more accurate approximations to multipoles zk for
k ¥ {1, 2, ..., o}, by taking averages

ẑ (n)k :=
1
mk

C
mk

j=1
z (n)k, j (5.1)

or by defining the polynomial

s̄ l, mk (z) :=
d (mk −1)

dz (mk −1)
s l, m(z) (5.2)

of degree (m−mk+1), which may be shown to have a simple zero, z̄ (n)k ,
near zk for sufficiently large n.

Whichever approximation we employ the rate of convergence determined
for vector-valued functions obeying the orthogonality condition (4.2) is
twice that for other functions.
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Theorem 5.1 refers to s l, m(z) and related approximations, while Theorem
5.2 treats Q l, m(z) in a similar manner.

Theorem 5.1. For sufficiently large n, the scalar part of the monic
denominator polynomial, s l, m(z), of the [l/m] vector Padé approximant to a
vector-valued function f(z) of Theorem 3.1 has, for each value of
k ¥ {1, 2, ..., o}, mk zeroes z

(n)
k, j (j=1, 2, ..., mk) in the neighbourhood of zk,

satisfying

E (n)k, j :=zk−z
(n)
k, j=O 1ny(m̄o+1 −1)/mk :

zk
zo+1
:yn/mk 2 (5.3)

and

Ê (n)k :=zk−ẑ
(n)
k =O 1ny(mk+m̄o+1 −2) :

zk
zo+1
:yn2 , (5.4)

where y=1.
Furthermore, for sufficiently large n, the polynomial s̄ l, mk (z) has a simple
zero, z̄ (n)k , near zk, satisfying

Ē (n)k :=zk−z̄
(n)
k =O 1ny(mk+m̄o+1 −2) :

zk
zo+1
:yn2 . (5.5)

If the function f(z) satisfies the conditions of Theorem 4.1, then y=2 in
(5.3), (5.4), (5.5).

Proof. Since s l, m(z) tends to Ro(z) uniformly in compact subsets of C,
each of the m zeroes, z (n)k, j (k=1, 2, ..., o; j=1, 2, ..., mk), of the former
polynomial must tend to a zero of Ro(z). Hence, for each k ¥ {1, 2, ..., o},
and for sufficiently large n, all z (n)k, j, for j=1, 2, ..., mk must lie close to zk.
We set

s l, m(z)=ak, n(z) D
mk

j=1
(z−z (n)k, j), (5.6)

where ak, n(z) are monic polynomials over C of maximum degree (m−mk).
It is clear that there must exist positive numbers d, nd, such that, for all
n > nd

|ak, n(zk)| \ d, k=1, 2, ..., o. (5.7)

Noting also that

Oq̂ (s)n (zk)P0=O(1), s=mk, mk+1, ..., m (5.8)

164 D. E. ROBERTS



we may use Taylor’s theorem to write

0=s l, m(z (n)k, j)= C
mk −1

s=0
Oq̂ (s)n (zk)P0 [− E

(n)
k, j]

s+[− E (n)k, j]
mk O(1). (5.9)

Statement (5.3) then follows using (5.7) with (3.27) and (3.28).
To prove (5.4) we observe that

Oq̂ (s)n (zk)P0=C
s

i=0

s!
(s− i)!

a (s− i)k, n (zk) pk, mk −i(e
(n)
k ) s=0, 1, ..., m, (5.10)

where the pk, i(x) are symmetric polynomials defined by

D
mk

i=1
(1+zxi)=C

mk

i=0
z ipk, i(x), x :=(x1, x2 · · · , xmk ) ¥ Cmk (5.11)

and e (n)k :=(E
(n)
k, 1, E

(n)
k, 2, ..., E

(n)
k, mk ). We consider functions of the form dis-

cussed in theorem 3.1. It is readily shown using proof by induction, that
(3.27), (5.7), and (5.8) imply

pk, mk −s(e
(n)
k )=O 1n s+m̄o+1 −1 :

zk
zo+1
:n2 , s=0, 1, ..., mk−1. (5.12)

In particular,

C
mk

j=1
E (n)k, j=pk, 1(e

(n)
k )=O 1nmk+m̄o+1 −2 :

zk
zo+1
:n2 . (5.13)

The result (5.4) with y=1 then follows.
Turning to the last part of the theorem, we note that (5.8) allows us to

state

0=s̄ l, mk (z̄
(n)
k )=Oq̂ (mk −1)n (zk)P0− Ē

(n)
k Oq̂ (mk)n (zk)P0+O(|Ē

(n)
k |
2). (5.14)

Using (5.7) with (3.27) and (3.28) we obtain

Ē (n)k =O 1nmk+m̄o+1 −2 :
zk
zo+1
:n2 . (5.15)

In fact, we may demonstrate that Ê (n)k and Ē (n)k agree to leading order.
The remaining parts of the theorem follow using (4.33) instead of (3.27)

and (3.28). L

We now consider the scalar polynomial of degree 2m, Q l, m(z) of (2.16) in
which q[l/m](z) is monic. From Corollary 3.3 we observe that, for suffi-
ciently large n, there are 2mk zeroes of Q l, m(z) close to zk for each
k ¥ {1, 2, ..., o}. We label these zeroes zŒ (n)k, j (j=1, 2, ..., 2mk). For a given k
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the following theorem considers not only the behaviour of these zeroes, but
also that of their average,ẑŒ (n)k . In addition we form the polynomial

Q̄ l, mk (z) :=
d (2mk −1)

dz (2mk −1)
Q l, m(z) (5.16)

which has a simple zero near zk for large enough n.

Theorem 5.2. For sufficiently large n, the [l/m] vector Padé approxi-
mant to a vector-valued function f(z) of Theorem 3.1 has, for each value of
k ¥ {1, 2, ..., o}, 2mk poles zŒ

(n)
k, j, j=1, 2, ..., 2mk in the neighbourhood of zk,

satisfying

EŒ (n)k, j :=zk−zŒ
(n)
k, j=O 1n (m̄o+1 −1)/mk :

zk
zo+1
:n/mk 2 (5.17)

and

ÊŒ (n)k :=zk−ẑŒ
(n)
k =O 1nmk+m̄o+1 −2 :

zk
zo+1
:n2 . (5.18)

Furthermore, for sufficiently large n, the polynomial Q̄ l, mk (z) has a simple
zero, z̄Œ (n)k , near zk, satisfying

ĒŒ (n)k :=zk−z̄Œ
(n)
k =O 1nmk+m̄o+1 −2 :

zk
zo+1
:n2 . (5.19)

Proof. The arguments are similar to those used to derive the previous
theorem. Hence, we simply present some of the differences here. From the
definition of Q l, m(z), (3.27), (3.28), and (5.8), it may be shown that

d s

dz s
Q l, m(z)|zk=˛O

1n s+2m̄o+1 −2 : zk
zo+1
:2n2 , s=0, 1, ..., mk−1

O 1n s−mk+m̄o+1 −1 : zk
zo+1
:n2 , s=mk, mk+1, ..., 2mk−1.

(5.20)

A statement similar to (5.7) may be made, while derivatives of order higher
than the 2m thk may be shown to be O(1); cf. (5.8). Corresponding to (5.12)
we have

pk, 2mk −s(eŒ
(n)
k )=˛O
1n s+2m̄o+1 −2 : zk

zo+1
:2n2 , s=0, 1, ..., mk−1

O 1n s−mk+m̄o+1 −1 : zk
zo+1
:n2 , s=mk, mk+1, ..., 2mk−1.

(5.21)

On setting s=2mk−1, (5.18) is confirmed. L
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Even if f(z) satisfies the conditions of Theorem 4.1, in general the rate of
convergence is not improved. In this respect note the convergence beha-
viour of the bivector given by (4.35).

We observe that the above results are of a nature similar to those derived
in [28], using a different definition of approximation.

REFERENCES

1. L. V. Ahlfors, ‘‘Complex Analysis,’’ 3rd ed., McGraw–Hill, New York, 1979.
2. G. A. Baker, Jr., and P. R. Graves-Morris, ‘‘Padé Approximants,’’ 2nd ed., Encyclopedia

of Mathematics and Its Applications, Vol. 59, Cambridge Univ. Press, Cambridge, UK,
1996.

3. P. R. Graves-Morris, Vector-valued rational interpolants, I, Numer. Math. 42 (1983),
331–348.

4. P. R. Graves-Morris, Extrapolation methods for vector sequences, Numer. Math. 61
(1992), 475–487.

5. P. R. Graves-Morris, A review of Padé methods for the acceleration of convergence of a
sequence of vectors, Appl. Numer. Math. 15 (1994), 153–174.

6. P. R. Graves-Morris and D. E. Roberts, From matrix to vector Padé approximants,
J. Comput. Appl. Math. 51 (1994), 205–236.

7. P. R. Graves-Morris and D. E. Roberts, Problems and progress in vector Padé approxi-
mation, J. Comput. Appl. Math. 77 (1997), 173–200.

8. P. R. Graves-Morris and E. B. Saff, Row convergence theorems for generalised inverse
vector-valued Padé approximants, J. Comput. Appl. Math. 23 (1988), 63–85.

9. P. R. Graves-Morris and E. B. Saff, An extension of a row convergence theorem for
vector Padé approximants, J. Comput. Appl. Math. 34 (1991), 315–324.

10. P. R. Graves-Morris and J. Van Iseghem, Row convergence theorems for vector-valued
Padé approximants, J. Approx. Theory 90 (1997), 153–173.

11. G. N. Hile and P. Lounesto, Matrix representations of Clifford algebras, Linear Algebra
Appl. 128 (1990), 51–63.

12. R. Lipschitz, ‘‘Ueber die Summen von Quadraten,’’ Bonn, 1886.
13. R. Lipschitz-(A. Weil), Correspondence, Ann. of Math. 69 (1959), 247–251.
14. X. Liu, Generalizations of Montessus’s theorem on the row convergence of rational

interpolations,Methods Appl. Anal. 2(4) (1995), 442–465.
15. G. R. Miller, Multilinear arcana and the Clifford connexion, Adv. Appl. Clifford Algebras

3 (1993), 29–37.
16. R. de Montessus de Ballore, Sur les fractions continues algébriques, Bull. Soc. Math.
France 30 (1902), 28–36.

17. I. R. Porteous, ‘‘Clifford Algebras and the Classical Groups,’’ Cambridge Univ. Press,
Cambridge, UK, 1995.

18. M. Riesz, ‘‘Clifford Numbers and Spinors’’ (E. F. Bolinder and P. Lounesto, Eds.),
Kluwer Academic, Dordrecht, 1993.

19. D. E. Roberts, Clifford algebras and vector-valued rational forms, I, Proc. Roy. Soc.
London Ser. A 431 (1990), 285–300.

20. D. E. Roberts, On the convergence of rows of vector Padé approximants, J. Comput.
Appl. Math. 70 (1996), 95–109.

21. D. E. Roberts, ‘‘Vector Padé Approximants,’’ Napier University Report CAM 95-3, 1995.
22. D. E. Roberts, On a vector q-d algorithm, Adv. Comput. Math. 8 (1998), 193–219.

A VECTOR OF DE MONTESSUS’ THEOREM 167



23. D. E. Roberts, On a representation of vector continued fractions, J. Comput. Appl. Math.
105 (1999), 453–466.

24. E. B. Saff, An extension of Montessus de Ballore’s theorem on the convergence of inter-
polating rational functions, J. Approx. Theory 6 (1972), 63–67.

25. A. Sidi, On extensions of the power method for normal operators, Linear Algebra Appl.
120 (1989), 207–224.

26. A. Sidi, Quantitative and constructive aspects of the generalized Koenig’s and de Mon-
tessus’s theorems for Padé approximants, J. Comput. Appl. Math. 36 (1990), 257–291.

27. A. Sidi, Application of vector-valued rational approximations to the matrix eigenvalue
problem and connections with Krylov subspace methods, SIAM J. Matrix Anal. Appl. 16
(1995), 1341–1369.

28. A. Sidi, Rational approximations from power series of vector-valued meromorphic func-
tions, J. Approx. Theory 77 (1994), 89–111.

29. A. Sidi and J. Bridger, Convergence and stability analyses for some vector extrapolation
methods in the presence of defective iteration matrices, J. Comput. Appl. Math. 22 (1988),
35–61.

30. A. E. Taylor and D. C. Lay, ‘‘Introduction to Functional Analysis,’’ 2nd ed., Wiley, New
York, 1980.

31. P. Wynn, Continued fractions whose coefficients obey a non-commutative law of multi-
plication, Arch. Rational Mech. Anal. 12 (1963), 273–312.

32. P. Wynn, Vector continued fractions, Linear Algebra Appl. 1 (1968), 357–3395.

Printed in The Netherlands

168 D. E. ROBERTS


	1. INTRODUCTION
	2. CLIFFORD ALGEBRAS AND VECTOR PADÉ APPROXIMANTS
	3. VECTOR-VALUED MEROMORPHIC FUNCTIONS
	4. SCALAR AND BIVECTOR PARTS OF THE DENOMINATOR
	5. POLE APPROXIMATION
	REFERENCES

